TRAINING SEQUENCES FOR MECHANIZED INDUCTION*

R. J. Solomonoff
Zator Company
Cambridge, Massachusetts

1. Introduction.

The present paper will not be primarily a description of
work that has been done, but will emphasize plans to utilize work
that has been done, to devise an "intelligent" machine capable
of improving its own operation.

The machine's primary purpose isto solve problems in some
particular field—for example, devising mathematical proofs, or,
more generally, writing computer programs having certain de-
sired characteristics. Along with these abilities we want the
computer to be able to' work constructively on the problem of
speeding up, or otherwise optimizing its own operation. This
machine would work on the self-improvement problem just as
it would work on any other problem given to it. The criterion
of its success at self-improvement need not be vacuously cir-
cular if it also has to solve problems different from self-im-
provement.

This work stems from an earlier paper (Ref. 1) which de-
scribed atheoretical inductive inference machine meant to learn
to work simple arithmetic problems, after having been given a
number of correctly worked examples. The machine envisioned
was to start with a certain basic set of abstract entities, which
it would combine in various ways to make abstractions that
could be used in predictions, since formally, any such learning
problem is equivalent to a problem in prediction. The abstrac-
tions used successfully in prediction as well as the abstractions
used to create them were given high values of "utility."" Abstrac-
tions with high utilities were to be combined with each other to
produce new abstractions to be used to make trial predictions in
new problems. Again, the successful abstractions were given
high utility values. This processof creating and testing new trial

*This work has been sponsored by the Air Force Office of Scientific
Research through contract AF49(638)-376.

SELF-ORGANIZING SYSTEMS~—1962

prediction abstractions was to be continued as new problems and
their solutions were given to the machine,

While this approach to inductive inference seemed reasonable
at one time, it soon became clear that I had no really rigorous
method to compute utilities of abstractions—thoughIhad manyin-
tuitive ideas about what properties this utility function should have.

After about a year and a half of work on the utility evalua-
tion problem, I devised a solution that seemed to work in cer-
tain circumstances, but I wasn't at all certain that it could be
applied to much more general problems. About this time I be-
came interested in formal languages, and their apparent re-
lationship to inductive inference. This work finally gave rise to
what I believe to be a very general theory of inductive inference
{Ref. 2) and it seems to have also solved the utility evaluation
problem in a completely general manner,

The work and plans that I shall describe are a continuation
and modification of the early work on mechanized induction in
view of this more general theory of inductive inference.

It will be noted that the present work is in some ways sim-
ilar in spirit to that of Simon, Newell, and Shaw (Ref. 3), in that
the heuristic devices used for the projected machine are usu-
ally patterned after those used by humans. Perhaps an impor-
tant difference is that I intend to use these human heuristics in
only the rudimentary stages of machine development. As soon
as possible, it is hoped that heuristics will be developed that
will be more closely matched tothe peculiarities of the machine
technology used. :

Similarity can also be drawn between the present work and
that of Kilburn, Grimsdale and Sumner (Ref. 4), who constructed
random computer programs in a successful mechanization of
certain kinds of induction. Again their emphasis seemed to be
on simulating certain aspects of human thinking and learning—
which is a somewhat different goal from that of the present
study. There was also emphasis on the supposed importance of
using some random choices so asto get "original' behavior from
the machine. My own feeling is that random choices can often
be used to result in simpler, faster calculations than could be
done otherwise, but that in general, fewer trial solutions have
to be examined if optimum non-random methods are used, and
the results will be more reliable and will look just as ''creative"
as the results obtained using partly random choices.

2. A General Description of the Machine and the Direction of
Future Work.

Evaluation of arithmetic expressions is the first problem
type for the machine of the present study. Expressions such as
13-8o0or9+1-30r3-12x(1-18)/4 - 21 are given to the

TRAINING SEQUENCES FOR' MECHANIZED INDUCTION

machine as a sequence of numbers and other symbols. To start
off, the machine "knows' which symbols are numbers, and which
are not. The machine attempts to solve these problems by de-
vising a program to evaluate all such input expressions.

Suppose that the first problem in the training sequence is
to evaluate numerically the expression 3.5 + 9,128, This ex-
pression is given tothe machine, along with the proper solution;
i.e. 12.628. The machine then constructs programs at random,
and tries each, in turn, onthe input expression, untilit finds one
that gives the result 12.628. It then stops, and retains the suc-
cessful program.

When a new problem, along w1th its solution, is given to the
machine, it first tries the last successful program on the new
problem.- If the program is successful, it stops. If not, it makes
new trial programs by modifying the old program. The new pro-
grams are tried out in turn until one is found that will correctly
work the new problems as well as all ofthe old problems. When
new problems are given, the latest successful program is tried
as before, and if unsuccessful, modifications are tried, as before.

The critical question is, what modifications to try in at-
tempts to "fix up'' a formerly successful program. If very sim-
ple modifications are the only ones allowed, then the machine
will only be able to work problems oftraining sequences in which
the conceptual steps between the problems are very small, and
are of the simple sort that can be dealt with using these simple
program modifications.

If the programs are represented by linear sequences of
symbols, then one very simple way to modify such a program,
is to add on more symbols.

A significant increase in power is obtained if one of the

symbols capable of being added on is to be interpreted as eras-~
ing one of the previous symbols.

The machine outlined above is to be v1ewed as a study for a
more elaborate system.. This system will, at first, consist of
two machines, The problems of the first machine ar’e to devise
programs that are as optimum as possible with respect to a
given criterion. Upon being given any criterion of program
evaluation, it will try to write programs that will be optimum
with respect to that criterion.

The second machine looks atthe descrlptmn of the first ma-
chine (the description being inthe form of a program), and tries
to optimize the first machine's operation with respect to speed,
economical use of memory, or any other desired criterion.

It is clear that the job of the second machine is a special
case of the general type of problem solvable by the first. Asa
result, the first machine car be gwen the problem of improving
itself. v

SELF~-ORGANIZING SYSTEMS—1962

If the first machine does not have other problems to solve,
the problem of self-improvement becomes trivial or meaning-
less. If it does have other problems, then self-improvement is
a well defined problem. Furthermore, if the first machine has
successfully gone through a training sequence containing prob-
lems of other program optimizations that are similar to the
self-improvement problem, then we may expect it to be able to
work with some success on its own improvement. Since most,
if not all, interesting problems can be expressed in the form of
the requirement of writing an optimum computer program with
respect to a certain criterion, it is seen that the self-improving
machine is, indeed, a very general, powerful device.

In what way is the simple arithmetic learning machine a
step toward the more powerful self-improving machine? I will
outline a sequence of expected developments from the simple
machine that I feel are likely to culminate in this goal.

First, the heuristic devices used by the present simple
machine will be expanded considerably. At the present time,
the machine would take about 10*° trials to work some fairly
simple problems. This would be decreased by a factor of about
20by a slightly cleverer searchprocedure. Another large factor
in speed could be obtained ifthe machine were able to recognize
certain simple regularities in sequences of symbols, and another
large speed-up could be obtained if it were able to recognize
regularities such as exist in sentences that are generated by
phrase structure grammars,

Various other heuristic devices must be devised until the
problem of finding an acceptable program can be solved in a
reasonable number of trials.

It next becomes necessary to mechanize the construction of
new trial heuristics that have a reasonable probability of being
useful, One way to do this is to first express the known heuris-
tics in some sort of uniform, compact notation so that it is easy
to see what characteristics the good ones have in common.

As a first approximation, it is possible to make new trial
heuristics by using random combinations of the symbols occur-
ring in the heuristics known to be good. By taking into account
the frequencies with whichthese symbols occur, noticing certain
intersymbol constraints and other regularities, it is possible to
make trial heuristics that have much higher probabilities of
being useful.

It will be noted that even at this simple stage of development,
many of the heuristics that are useful for devising programs to
solve simple problems in arithmetic and algebra, are similar to
the heuristics useful in creating good trial heuristics.

We could notat this stage, however, allow the original prob-
lem-solving machine to work onthe problem of improving itself,

TRAINING SEQUENCES FOR MECHANIZED INDUCTION

since the problem of program optimizationis somewhat different
from the problem of writing programs that satisfy a certain
criterion. In this latter case, a program either satisfies the
criterion or doesn't. There is no ''gray scale." In the case of
the heuristic optimization problem there is a continuum of de-
grees of effectiveness for-all heuristics.

It is believed, however, that in the present case changing
the machine from the black-white problem-solving criterion to
the more general gray scale criterion will not be very difficuit.
As was noted before, many of the heuristics for both types of
problems appear to be identical or similar,

3. Work That Has Already Been Done.

Most recently some detailed analysis was made of the ma-
chine tolearn to evaluate arithmetic expressions. As a possible
input, consider the sequence of symbols

9x 8 (1)

and the correct evaluation of it, 72. The machine must devise
a program that transforms the sequence (1) intothe number, 72.

In the present case, the only programs permissible are in
the form of allowable substitution rules onthe input expressions.
The machine code for one such substitution rule is

AxB - MxAB 2)

Here A and B are meant to be any numbers, and 'X" is a non-
numerical expression. M is a special symbol to denote an oper-
ator. M x AB means "the number resulting when A and B are
subject to the operation 'x'"'—or, more briefly, '"the product of
A and B."

The rule (2) means that whenever a sub-sequence of the form
A X B appears inan input expression, thenthis subsequence may
be transformed into the number which isthe product of A and B.
Rule (2) may also be applied to any permissibly transformed
form of an input expression.

The set of rules

A+B M+ AB {3)
A-B-M-AB
(A)— A

is adequate for evaluating any expression containing numbers.
+, =,), and {. The transformation rules are to be applied in
arbitrary order to an input expression, When a sequence is

SELF-ORGANIZING SYSTEMS—1962

finally obtained to which no further transformations can be ap-
plied, this sequence is presented as output.

At the beginning, the machine will have avallable to it only
the symbols

=+, X, /,)9 (,As ~—>,M,¢,4/,n. v (4)

These symbols are at first selected at random to make strings
of symbols tobe used as trial sets of transformation rules. The
symbol "Y' isa termination symbol. A trial string terminates
as soon as this symbol is selected.

The symbol "¢" indicates the end of one substitution rule
and the beginning of another.

The symbol "n" is a null symbol and indicates that there is
no symbol at all at the point occupied by n.

In addition to the symbols listed in (4), the machine can use
positive integers. However, while the integer 1 may be used at
any point in a trial sequence, the integer, ¢, can only be used if
the integer i-1 has occurred sometime before in the trial se-
quence. These integers are not, however, "numbers,” in the
sense that M canoperate on them. They are usedas "subscripts"
for the symbol, A. The symbol A as used in the set of rules (3)
would be designated by Al, the symbol B, by A2,

The entire set of rules of (3) could be written by the ma-
chine as .

Al+ A2 M+ AlA2¢ Al -A2 M - A1A2 ¢ (A1) ALy(5)

If we constrain the trial sequences sothat integers and only
integers are allowed immediately following the symbol, A, then
the probability of randomly constructing the sequence

Al+ A2 - M+ A1 A2y

is about 10-1°, If we do not use this constraint on the integers,
the probability is somewhat lower. .

3.1. Training Sequences.

If the problems of evaluating 3+ 8,7 -4, and (3 + 2) are
given to the machine in that order, and it is required to solve
each one in turn, by devising a new substitution rule, then the
set of rules, (3), would be obtained, after many, many trials for
each new problem.,

Suppose that we next give the problem

3x4+1 (8)

TRAINING SEQUENCES FOR MECHANIZED INDUCTION

"The creator of the problems will be using the convention that
evaluation of multiplication and division precedes evaluation of
addition and subtraction whenever possible. ‘

The machine, of course, not knowing the convention, will
first transform expression (6) into 3 x 5. Fromthis point, there
is no simple transformation that will yield the correct answer,
13.

It is clear that if it is not permitted to order the trans-
formation. rules, the machine must have some means of rec-
ognizing when the evaluation of 3 X 4 must precede the eval-
uation of 4 + 1. : :

Context-dependent substitution does appear to be adequate
for evaluation of expressions containing numbers, +, -, }, (, X,
and /. Some rules that are adequate for evaluating (6) are

. AxB - MxAB . 7)
nA+Bn—-nM+ABn (8)
The rule (8) says that the substitution o
A+B—->M+AB

is permitted in the context n,n.

Unfortunately, itis necessary that rules for evaluating A + B
and A - B must all be context-dependent substitutions. In order
to evaluate expressions like (6), the machine would first have to
unlearn the rules (3). Since unlearning is a rather difficult proc-
ess for humans and is even more difficult for the machine herein
described, it would be well to avoid this difficulty, for the pres-
ent, This can be done by suitably designing the training se-
quence, so that problems involving X, /,), and (are givenbefore
those containing + and -.

If a suitable training sequence is given, the machine will
discover three context-independent rules {for the symbols), (,
/, and x} and 50 context-dependent rules involving + and -.

If the machine has had no previous experience in problem-
solving, it will take about 10 10 tries to obtain a rule of the com-
plexity of (7). After a reasonable amount of experience; it will
take about one fiftieth as many trials for a rule of the same
complexity, since the probabilities of choice .of various of the
symbols arethen closer tothe frequencies with whichthey occur
in the rule. ‘ -

One can identify the "'a priori probability' of a rule withthe
product of the probabilities of its symbols. Inthe above examples
of machine behavior, the trial rules have been selected at ran-
dom, and the probability of a particular rule's being tried was

SELF-ORGANIZING SYSTEMS-—1962

proportional to its a priori probability. In a more general case,
we can set the probability of choosing a given rule equalto some
function of the a priori probability of that rule, If we select this
function so as to minimize the expected number of trials (these
are "random trials with replacement'), thenthe optimum function
is the normalized square root of the probability.

There is, however, some disadvantage in using this partic-
ular function. While fewer trials are indeed required, the rule
obtained in this way will not have as great a probability of ex-
trapolating properly to new problems.

A search technique that is optimum with respect to both
speed and likelihood of correct extrapolation, consists of trying
the rules in fixed order of a priori probability, with little or no
randomness. For simply constructed rules, a search of this
kind is not difficult to program, but for more complex kinds of
rules, it may be very difficult to program and take more ma-
chine time than simpler search schemes that take, on the aver-
age, a larger number of trials.

In the present case, the number of trials can be reduced by
a factor of about 20 if the optimum search is used. Using both
optimum search and modification of symbol probabilities through
previous experience, would give a speed-up factor of 1000, or
about 107 trials for a simple rule,

A further increase in operating speed will be obtained if the
machine is able to notice certain kinds of regularities in the
successful rules. In particular, the 50 context-dependent rules,
of which (8) is an example), are all of about the same form.
They can all be compactly expressed with the notation.

a1ABBay — oy MB ABa, (9)
a =+, -,), (’ n (10)
B=+, - (11)

To obtain any one of the 50 rules, it is necessary to select
a value for o; (out of any of the five possible a values), then to
select a value for gy (out of the two possibilities), and then to
select a value for o, (out of the five possibilities).

Rule (8) can be obtained by the choices: &y = n, 8; = +, and
@, = n.-To be able to construct a set of rules like (9), (10),(11),
the machine must have a suitable notation convention. Also, it
must have means for deciding that after it had discovered afew
of the 50 individual rules, that it could represent them more
compactly by defining, say, a =+, -,). Later it might find that
even more compactness resulted if the definition @ =+, ~,), n
was used.

TRAINING SEQUENCES FOR MECHANIZED INDUCTION

A criterion for '"compactness' is suggested in Ref, 2, and
somewhat more relevant criteria are discussed in Ref. 5,

Evaluation of arithmetic expressions was taken as one of
the simplest possible tasks for a machine to try to learn., Sub-
stitution rules are, in general, a powerful method of expressing
instructions, and it has been possible to devise substitution rules
that will solve linear equations. So far, a formalism ofthis kind
has been devised for only one linear equation in one unknown,

3.2. Heuristics.

It was noted in the previous section, that a great deal of
difficulty would be caused if the machine were given problems
containing + and ~ before being given problems containing x and
/. This difficulty stems entirely from the weakness of the heu-
ristic devices available to the machine at its present state of
development, Ingeneral, ifthe machine has few heuristic devices
available toit, and these are not of great strength, then the train-
ing sequences will have to be very carefully constructed, so
that the conceptual jumps between successive problems are within
the capability of the machine. If the machine's heuristic
devices are more powerful, then far less care need be exercised
in training sequence construction.

4. Plans for Future Work.

There are no immediate plans for simulating on a computer
any of the operations described. At the present time, it is felt
that theoretical approximations for the number oftrials required
in searches for solutions are of more interest than would be the
results of such simulation.

The immediate future willbe spent in devising suitable heu-
ristic devices for arithmetic evaluation and the solution of sev-
eral linear equations in several unknowns. These will involve
some expansion of the language in which solutions will be ex-
pressed. Attempts will be made to devise a compact, uniform
notation for the heuristics, so that similarities between them
may be found, as well as suggestions for the creation of new
trial heuristics.

Creation of new heuristics may be viewed as the prime
task of a higher order inductive inference machine, and it is in
the operation of this higher order machine, that I am primarily
interested. Such a machine is capable of self-improvement.
Practically any learning or induction problem can be put into a
form that is acceptable to a machine of this type. Whether any
particular problem can, indeed, be solved by the machine will
depend upon the power of the heuristics originally given to the

SELF-ORGANIZING SYSTEMS—1962

machine, uponthe exact nature of the training sequence preceding
the problem, and upon the time available for solution.

.Similar remarks apply to human beings,
REFERENCES

R. J. Solomonoff: '"An Inductive Inference Machine'". IRE
Convention Record, Section onInformation Theory,pp. 56-62,
1957.

R, J. Solomonoff: "A Preliminary Report on a General
Theory of Inductive Inference," Zator Technical Bulletin
No. 138, AFSOR TN-50-1459, Zator Co., November 1960,
A. Newell, H, Simon, J. Shaw: '"Reportona General Problem
Solving Program." Information Processing, Butterworth
Scientific Publications, London, 1960, o

T. Kilburn, R. Grimsdale, F. Sumner: "Experiments in
Machine Learning and Thinking." Information Processing,
Butterworth Scientific Publications, Liondon, 1960, -

R. J, Solomonoff: "An Inductive Inference Code Employing
Definitions." Zator Technical Bulletin No, 141, AFOSR
2214, Zator Co., 1961.

/0

